
Digital ASIC Fabrication
SDMAY24-21

Haris Khan
Jonathan Hess

Samuel Heikens
Yu Wei Tan

Client & Advisor: Dr. Henry Duwe

Project Vision

Problem Statement:
● Digital ASIC fabrication is a valuable skill, but it is not in the undergraduate curriculum

● Traditional guitar pedals are incapable of having multiple effects

Objective:
● Learn EFabless tools & ASIC fabrication flow

● Develop an ASIC for guitar pedals that allow multiple effects

● Develop documentation to pass on knowledge to future teams

2

Project Purpose

● Reduced need for multiple guitar pedals

● Standardized pedal for Studio Artists

● Provide more knowledge and resources to open source pool

● Create project that can be worked on by future students with CPRE 288 experience

without knowledge of ASIC fabrication

3

Project Scope

● Design and send to EFabless chip design
○ Setup workspace in docker

○ Design modules in verilog

○ Test Individual Modules

○ Compile Verilog Modules

○ Test Compiled Verilog Modules

○ Select Off Chip components like data converters and memory

● Generate Layout

● Send to EFabless

4

ASIC Fabrication

5

Who:

- EFabless Open MPW Program

What:

- ASIC Fabrication at zero cost to

developers

Why:

- Open-source platform

ASIC Fabrication

6

Caravel Harness:

● Microcontroller (PicoRV32)

● Logic Analyser

● I/O Pads

CLEAR - The Open Source FPGA ASIC

https://github.com/efabless/clear_old

Top Level Basic Design

● Allow for creation of pedal
with inputs using the caravel
PCB.

● A finalized design could
potentially be added to the
guitar itself rather than an
individual pedal.

7

Current Pedalboards

● Current pedalboards use multiple effects requires multiple pedals connected in series.

● Our design will reduce multiple of these pedals down to one.

8

Requirements

● 3 types of effects
○ Delay

○ Reverb

○ Compression

● Delay and reverb will each have two analog inputs
○ Delay

○ Magnitude

● Compression will have two analog inputs
○ Threshold

○ Ratio

9

● Audio Sample Size
○ 16 bits

● Sampling rate
○ 10 kHz

○

Engineering Standards

● Audio in/out: Cable is a 2.1 mm DC input at 9 volts, with the center contact carrying

the negative and the outer contact carrying the positive part of the current (Boss

Standard).

● SPI (Serial Peripheral Interface) for connecting ASIC to ADC, DAC, and SRAM

● IEEE 1364-2005 – IEEE Standard Verilog Hardware Description Language

● ISO/IEC 9899:2018 – C programming language (C17)

10

Setup workspace

Created GitHub repository with wiki, issues, and
milestones

Setup CI/CD for top level and module level testing

Organization

Repository

WIKI

11

https://github.com/sdmay24-21
https://github.com/sdmay24-21/ASIC-GuitarPedal
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki

Conceptual Final Design Diagram

12

After deciding on bit width, clock speed, memory allocation, and protocols the following

design was created.

● Using a Finite Impulse Response implementation of many effects such as delay, reverb,

or looping can be implemented

● For non linear effects the compression module has been added.

System Design-Control

We will be using the microcontroller, PicoRV32, as well as logic analyzer provided in the
caravel harness

This allows to be programmed and revised via the SRAM

Will be used for Reverb and Delay functions and used to control compression module
usage

More information can be found in the wiki:
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Module

13

https://caravel-harness.readthedocs.io/en/latest/programming.html
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Module

System Design - Memory

The memory is organized in a queue format with 16 bit values.

Every ADC Clock Cycle the data is added to the queue and the address is increased.

Depending on the mode, when memory runs out it will overwrite old data.

14

Data Data DataADC

DAC

… Data Data …

Variable Delay Guitar Effect Example using Digital Memory Queue

Other Pedal Effects using Queue Memory

15

Data Data DataADC

DAC

… Data Data …

Variable Impulse Response (Reverb) Guitar Effect Example using Digital Memory Queue

Impulse

x

Adder

Impulse

x

Impulse

x

Data Data DataADC

DAC

… Data Data …

Variable Loop Guitar Effect Example using Digital Memory Queue

R
EC

O
R

D

Adder

!RECORD

tail
head

System Design-SPI

● Used to interface between memory on and off chip

● it allows for simultaneous data transmission and reception

● It is a synchronous device so the off chip components that it communicates to need to

be on the same clock

●
●
●

16

What is Reverb?

Equally Spaced
Delays with a
scaling factor for
each delay

17

System Design-Compression

● What is Compression?
● Inputs

○ audio(16)
○ threshold(8)
○ ratio(8)

● When input is less than threshold, output
= input

● Otherwise, a portion of the input is added
beyond the threshold

18

System Design-Compression

19

System Design-Compression

● Prototype Results
● The test results match the signal flow diagram

20

Off-Chip Components

 21

SRAM ADC DAC

External Memory
Audio Input

Effect Tuning Knobs
Audio Output

Selection Criteria

22

SRAM

ADC

DAC

● Memory Size (>400 kB)

● Access Time

● Sampling Rate (>10 kHz)

● Caravel Absolute Maximum Ratings

● Sampling Rate (>10 kHz)

● Caravel Absolute Maximum Ratings

Prototyping - Using Python

Python Module shows current implementation of verilog design.

Reflects the sampling rate change and bit width of design.

 4 bit:

8 bit:

16bit:

23

Python Module Steps

24

Audio In

Audio Out
Convert to

Mono
Convert

Sample Rate
Pedal Effects

Convert Bit
Width

CSV Out

This process let us determine acceptable audio bit width and sample rates.

Python Output

Audio Input

Design Complexity

●What made your design hard?
○ keeping track of multiple clocks and managing on chip and off chip memory

●What kind of design iterations were needed?

○ Initially our design was over simplified only having the function blocks in verilog

○ We then decided that off chip memory was needed to support more storage if we wanted to record a
reasonable length of audio, no previous group has had off chip components

● Layout space

● Keeping track of clock speeds to determine cycles needed for certain operations such as
accessing memory, which is determined based on the SPI

25

Project Schedule

26

Project Plan

27

Jonathan Hess

● Python and Verilator Testing

● Top Level Design

● Establish usage of EFabless tools

Yu Wei Tan

● Off-Chip Design

● PCB Design

Samuel Heikens

● Compression Module

● PCB Design

Haris Khan

● SPI Design

● Memory

Python Module Testing

● Python Module has been created which can:

● Simulate expected outputs

● Create test data for all 3 levels of top level verilog testing

● Create audio from module outputs

● Create audio from ASIC verilog output

● Useful for hearing results of design before fabrication

28

Verilog Top Level Testing

Using Verilator script along with python test data, testing will be done on 3 top level

testbenches:

1 - Without Control or SPI

2 - Without SPI

3 - Fully controlled by SPI

These will allow for verification that the verilog matches the python module. Also helps us

with debugging to see which component is at fault

29

PCB Level Testing

Create PCB using Kicad

Then create test plan for future students to do the

following:

● Use soldering instructions to place parts

● Check connections with multimeter

● Use python code with Caravel PCB

● Use python script for loading and testing

individual components

30

Caravel Test Socket PCB

https://github.com/efabless/caravel_board

GitHub Runners

Verilator Runner

● Runs Verilator Testbench on changed files if exists

OpenLane Runner

● Runs OpenLane Hardening on design

31
OpenLane Hardening Example

Conclusion

32

Project Status

● Modules are design and need to be tested using python script

Next Project Steps

● Create PCB test plan to check connections with test points
● Python script for loading and testing individual components

References

https://efabless.com/open_shuttle_program

33

https://efabless.com/open_shuttle_program

Q & A

34

