Digital ASIC Fabrication
SDMAY24-21

Haris Khan
Jonathan Hess
Samuel Heikens

Yu Wei Tan

Client & Advisor: Dr. Henry Duwe

Project Vision

Problem Statement:

e Digital ASIC fabrication is a valuable skill, but it is not in the undergraduate curriculum
e Traditional guitar pedals are incapable of having multiple effects

Objective:
® Learn EFabless tools & ASIC fabrication flow
® Develop an ASIC for guitar pedals that allow multiple effects
e Develop documentation to pass on knowledge to future teams

Project Purpose

Reduced need for multiple guitar pedals

Standardized pedal for Studio Artists

Provide more knowledge and resources to open source pool

Create project that can be worked on by future students with CPRE 288 experience
without knowledge of ASIC fabrication

Project Scope

e Design and send to EFabless chip design
Setup workspace in docker

Design modules in verilog

Test Individual Modules

Compile Verilog Modules

Test Compiled Verilog Modules

© O O O O O

Select Off Chip components like data converters and memory

® (Generate Layout
® Send to EFabless

ASIC Fabrication

Who:
Vanilla Caravelv _ Caravel
e | TR - EFabless Open MPW Program
What:
- ASIC Fabrication at zero cost to
developers
efabless:
v Why:
MPW
iy - Open-source platform

skywater

Sponsorship w

Caravel Harness Chip ".°:
2%8% o)
. . 3 % el 5
=
: 3 35358 3
dPrcation L e ,
I Padframe

I
I

Bom) | | ClockingandDLL | | POR

Caravel Harness: sp || s |

trol n
_] come I—Mo— GPIO configuration
[| GPIO ! and routing
Housekeeping serial loader
. . - user_clock

e Microcontroller (PicoRV32) ! e

SoC core —{1-bit GPIO 8 g
. <
L A I BE Flash controller o o
73 ot w
® Logic Analyser | |)] :
- CPU § § bus g 3
s 5 —| SPI master g t=-
‘ I / O Pa d S = (5 —| Logic analyzer |—— - = [—]logic analyzer 8
o
g —| User input enables |—— B S
Qo I [<%
; i L [~{RQ (@)
Storage (memory)
Management SoC wrapper

CLEAR - The Open Source FPGA ASIC

https://github.com/efabless/clear_old

Top Level Basic Design

e Allow for creation of pedal
with inputs using the caravel
PCB.

e A finalized design could
potentially be added to the
guitar itself rather than an
individual pedal.

Daughter PCB

PREAMP

ADC

L

DAC

Caravel PCB

ASIC

Current Pedalboards

e Current pedalboards use multiple effects requires multiple pedals connected in series.
® Our design will reduce multiple of these pedals down to one.

Requirements

e 3 types of effects ® Audio Sample Size
o Delay o 16 bits

o Reverb e Sampling rate
o Compression o 10 kHz

e Delay and reverb will each have two analog inputs
o Delay
o Magnitude

e Compression will have two analog inputs

o Threshold
o Ratio

Engineering Standards

e Audioin/out: Cableis a 2.1 mm DC input at 9 volts, with the center contact carrying
the negative and the outer contact carrying the positive part of the current (Boss
Standard).

® SPI (Serial Peripheral Interface) for connecting ASIC to ADC, DAC, and SRAM

e |EEE 1364-2005 — IEEE Standard Verilog Hardware Description Language

e [SO/IEC 9899:2018 — C programming language (C17)

10

Setup workspace

2% ASIC-GuitarPedal "= 52 Eanpins - | | OUnwateh 1 -

ganaratad from sfabless/caraval user project

Created GitHub repository with wiki, issues, and)| Vikmier St ot | st
m i I eStO n e S Your main branch isn't protected Protect this branch %

Protact this branch from force pushing or deletion, or raquira status chacks bafora marging. Laarn mora

Setup CI/CD for top level and module level testing g e Gl

B othub/workflows Dockerimage run 3 weeks 3g0

~vscode mpulse Audio Testing ast month

Organization

B bin Trying new docker task 3 weeks g0
B cef nitial commit 3 months ago
.

ReDOSItO rV B cocs dpi change 2 months 20
| g nitial commit 3 months ago
| et nitial commit 3 months ago

M B ® nitial commit 3 months ago
BB 'vz/user_project_wrapper nitial commit 3 months 3go
B mag nitial commit 3 months ago
B maglef nitial commit 3 months ago
B openiane Remove termp readme 2 months ago
B python Merge branch ‘main’ into Python 3 weeks ago
| s nitisl commit 3 months ago
| signoff Remove termp readme 2 months ago
B spef nitial commit 3 months ago
B ol nitial commit 3 months 3go
B veriog Start top Jevel sim CPP code 3weaks 200
O -gitignore Git ignore and design info update 2 months ago

https://github.com/sdmay24-21
https://github.com/sdmay24-21/ASIC-GuitarPedal
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki

Conceptual Final Design Diagram

After deciding on bit width, clock speed, memory allocation, and protocols the following

design was created.

e Using a Finite Impulse Response implementation of many effects such as delay, reverb,

or looping can be implemented

e For non linear effects the compression module has been added.

[Off Chip SRAM](—E SPIBUS

(S, A

-~

L

al
-
SPI Controller g
[
=
o

ado|s

= Controller

/ Control off chip memory »SRAM SPI

3
g0
Q o 7

o
Trim mux I
Trim 0-3

-

ADC out

Address

Memory Controller

impulse output

SRAM

URNFJE
~ ~N : : % =
' ' > rd
' ' mem_to_com| Q
DAC _I—)i ; b 5 mux
' ' A4

- J :
\\ DS T Compression
1 .

12

System Design-Control

We will be using the microcontroller, PicoRV32, as well as logic analyzer provided in the
caravel harness

This allows to be programmed and revised via the SRAM

Will be used for Reverb and Delay functions and used to control compression module
usage

More information can be found in the wiki:
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules Control Module

13

https://caravel-harness.readthedocs.io/en/latest/programming.html
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Module

System Design - Memory

The memory is organized in a queue format with 16 bit values.
Every ADC Clock Cycle the data is added to the queue and the address is increased.

Depending on the mode, when memory runs out it will overwrite old data.

-—1 Data I—-l Data I—» —-l Data H Data |——| Data |——~>

Variable Delay Guitar Effect Example using Digital Memory Queue ﬁ

14

Other Pedal Effects using Queue Memory
-—1 Dita I——l Dita |—> ——I Data H De:(ta I—-I Data |———>

| Impulse | | Impulse | | Impulse |

JI Adder |——-

Variable Impulse Response (Reverb) Guitar Effect Example using Digital Memory Queue

head \

tail
Data I——l Data |—> ——I Data |———| Data I—-l Data |—>

Variable Loop Guitar Effect Example using Digital Memory Queue

RECORD

\ 'RECORD |

1 Adder

15

System Design-SP|

e Used to interface between memory on and off chip

e it allows for simultaneous data transmission and reception

® Itis asynchronous device so the off chip components that it communicates to need to

be on the same clock

SPI
Master

MISO
MOSI
CLK
CSs1
CS2

cs

MISO
»| MOSI SPI
| CLK Slave
Pl cs
MISO
—»| MosI SPI
CLK Slave

16

What is Reverb?

1

A
—3 Reverb Impulse Response
0<a<1
a
A
a*2
a*3
T a*4 a5
T 1>
To 2To 3To 4To 5To

Equally Spaced
Delays with a
scaling factor for
each delay

17

System Design-Compression

e Whatis Compression?

® Inputs
o audio(16)
o threshold(8)
o ratio(8)

e When inputis less than threshold, output
= input

e Otherwise, a portion of the input is added
beyond the threshold

|aA27 IndinO

Threshold

Input Level

Ratio=1

Ratio = 1/2

Ratio=1/3

Ratio = 1/6

18

System Design-Compression

Ratio (8)

System Design-Compression

e Prototype Results
® The test results match the signal flow diagram

9a [Jec [Jaa | J65 [0 [Taa [y81 | i [55
/compression_tbiratio 00 o [faf [Je0o [118 cc ff aa
“ Ilcompression_tb/audio_in
» lcompression_tb/audio_out
- lcompression_tb/threshold16pos
Icompression_tb/threshold16neg
Ilcompression_th/audio_excesspos
» lcompression_tb/audio_excessneg
~ lcompression_tb/audio_excessPosTimeRatio23
lcompression_tb/audio_excessNegTimeRatio23
Icompression_th/audio_excessPosTimeRatio15
Ilcompression_tb/audio_excessNegTimeRatiol5
/compression_tb/audio_outpos
-4 Jcompression_tb/audio_outneg

[
|

Cursor 1 100001 ps

|[h] compression.v | |h] compression_tb.v » | ga] Wave | NE

20

Off-Chip Components

Selection Criteria

I

Prototyping - Using Python

Python Module shows current implementation of verilog design.

Reflects the sampling rate change and bit width of design.

23

Python Module Steps

Audio In

Audio Out

AN R e iy

CSV Out

This process let us determine acceptable audio bit width and sample rates.

Python Output

Audio Input

Stereo, 44100Hz bt
32_pit float 05

24

Design Complexity

e \What made your design hard?
o keeping track of multiple clocks and managing on chip and off chip memory

e What kind of design iterations were needed?
o Initially our design was over simplified only having the function blocks in verilog

o We then decided that off chip memory was needed to support more storage if we wanted to record a
reasonable length of audio, no previous group has had off chip components

e Layout space

e Keeping track of clock speeds to determine cycles needed for certain operations such as
accessing memory, which is determined based on the SPI

25

Project Schedu

S

Digital ASIC Fabrication Statis October November December January February March April May
Task name 6 |13|20|27| 3 [10[17|24| 1 | 8 [15]|19| 26| 2 | 9 |16 23| 29| 8 | 15| 22| 29 12 19 26 10
Project Setup I I
Define Project Direction Done e
Define Project Scope Done s
Research Resources Done v
Setup Workspace Done v
Top Level Design Done s
Individual Module Design Done ¥
Off-Chip Components Done ~
Design Verification In Progress ~
Block Testing In Progress ~

'Module Assembly |

System Testing

PCB Design

Design Hardening

Precheck Verification

Efabless Submission

Bring-up Plan

Final Documentation

Final Presentation

26

Project Plan
a 0

Jonathan Hess

e Python and Verilator Testing

e Top Level Design

\0 Establish usage of EFabless tools /

4 h

Samuel Heikens

e Compression Module

e PCB Design

-

Yu Wei Tan
e Off-Chip Design
e PCB Design

\

-

Haris Khan
® SPI Design

® Memory

o /

-

27

Python Module Testing

Python Module has been created which can:

e Simulate expected outputs

e Create test data for all 3 levels of top level verilog testing
e Create audio from module outputs

® Create audio from ASIC verilog output

Useful for hearing results of design before fabrication

28

Verilog Top Level Testing =

Using Verilator script along with python test data, testing will be done on 3 top level
testbenches:

1 - Without Control or SPI
2 - Without SPI
3 - Fully controlled by SPI

These will allow for verification that the verilog matches the python module. Also helps us
with debugging to see which component is at fault

29

PCB Level Testing

Create PCB using Kicad

Then create test plan for future students to do the
following:

® Use soldering instructions to place parts
® Check connections with multimeter

i\ Carmvel

® Use python code with Caravel PCB |

(34l
acus |O!
100361 O}

e Use python script for loading and testing

individual components
Caravel Test Socket PCB

30

https://github.com/efabless/caravel_board

GitHub Runners

Verilator Runner

® Runs Verilator Testbench on changed files if exists

Openlane Runner

® Runs OpenlLane Hardening on design

«a

@ Create test docker-image.yml #17

I () Summar y
Triggered via push 3 weeks ago Status Total duration Artifacts
s & Jetsama pushed -0- c287d99 main Success 2h 23m 33s 1
@ pdk
user_project_flow (sky130A] 5 5
° FECIESIEER . user_project_ci.yml
@ user_project_flow (sky1308B) on: push
Run details Matrix: user_project_flow
(’9 Usage ° dk " 3590
p @ user_project_flow (sky130... 2h 20m

) Workflow file
@ user_project_flow (sky130... 1h41m

Openlane Hardening Example

31

Conclusion

Project Status
® Modules are design and need to be tested using python script
Next Project Steps

® Create PCB test plan to check connections with test points
® Python script for loading and testing individual components

32

References

https://efabless.com/open shuttle

rogram

33

https://efabless.com/open_shuttle_program

Q& A

34

