

Development Standards & Practices Used
● IEEE 1364-2005: IEEE Standard for Verilog Hardware Description

Language

● IEEE 1801-2018: IEEE Standard for Design and Verification of

Low-Power, Energy-Aware Electronic Systems

● ISO/IEC 9899:2018: C programming language (C17)

● IEEE 1076.4-2000: IEEE Standard VITAL ASIC Modelling Specification

● Efabless Open Source Software

● Serial Peripheral Interface (SPI) Protocol

Summary of Requirements

● The design is approved for fabrication from eFabless

● The design can be mounted and used with a PCB board

● The design has to pass the MPW precheck tool

Applicable Courses from Iowa State University Curriculum
● CPRE 281 — Digital Logic

● CPRE 288 — Embedded Systems

● CPRE 381 — Computer Organization and Assembly Level Programming

● CPRE 488 — Embedded Systems Design

● EE 330 — Integrating Electronics

● EE 435 — Analog VLSI Design

● EE 465 — Digital VLSI Design

● EE 501 — Analog and Mixed-Signal VLSI Circuit Design Techniques

1

New Skills/Knowledge acquired that was not taught in courses
Skills:

● ASIC design

● Verilog implementation

● Working with open-sourced tools

● Learning to work with unfamiliar tools

● Agile workflow

Tools:

● KiCAD

● Verilator

● OpenLane

2

Table of Contents
1. The Team 5

1.1 TeamMembers 5

1.2 Required Skill Sets for Your Project 6

1.3 Skill Sets Covered by the Team 6

1.4 Project Management Style Adopted by the Team 7

1.5 Initial Project Management Roles 7

2. Introduction 8

2.1 Problem Statement 8

2.2 Requirements & Constraints 8

2.3 Engineering Standards 11

2.4 Intended Users and Uses 12

3. Project Plan 13

3.1 Task Decomposition 13

3.2 Project Management/Tracking Procedures 15

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 16

3.4 Project Timeline/Schedule 18

3.5 Risks and Risk Management/Mitigation 18

3.6 Personnel Effort Requirements 19

3.7 OTHER RESOURCE REQUIREMENTS 20

4. Design 21

4.1 Design Content 21

4.2 Design Complexity 21

4.3 Modern Engineering Tools 22

4.4 Design Context 22

4.5 Prior Work/Solutions 23

4.6 Design Decisions 24

4.7 Proposed Design 25

4.7.1 Design 0 (Initial Design) 25

Functionality: 26

4.7.2 Design 1 26

4.7.3 Design 2 27

4.8 Module Design 33

i. Control Module: 33

ii. SPI-Module 33

iii. Compression Module 34

iv. Memory Controller Module 35

v. On-Chip SRAM Module 36
4.9 Hardening 37

5 Testing 37

3

5.1 Unit Testing 37

5.2 Interface Testing 39

5.3 Integration Testing 39

5.4 System Testing 39

5.5 Regression Testing 40

5.6 Acceptance Testing 40

6. Professionalism 40

6.1 Areas of Responsibility 40

Differences Between IEEE and NSPE: 43

6.2 Project Specific Professional Responsibility Areas 44

6.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA 44

7. Closing Material 45

7.1 Discussion 45

7.2 Conclusion 45

7.3 References 45

7.4 Appendices 45

7.4.1 Team Contract 46

TeamMembers 46

Team Procedures 46

Participation Expectations 46

Leadership 47

Collaboration and Inclusion 48

Goal-Setting, Planning, and Execution 49

Consequences for Not Adhering to Team Contract 49

4

List symbols/definitions

ADC - Analog-to-Digital Converter

DAC - Digital-to-Analog Converter

SRAM - Static Random Access Memory

SPI - Serial Peripheral Interface

PCB - Printed Circuit Board

ASIC - Application-Specific Integrated Circuit

Verilog HDL - Verilog Hardware Description Language

SoC - System on chip

eFabless - Open source fabrication company that will fabricate our chip, and

provide us with design resources/tools

SkyWater 130nm - Fabrication process used by eFabless

Caravel Harness - Provided wrapper around our design which includes an SoC

User Area - Our design space within the Caravel Harness

Management Area - Part of the Caravel Harness that includes management

utilities, SoC, and logic analyzer probes

OpenLane - The collection of open-sourced tools provided by eFabless

KiCAD - PCB design tool

Verilator - Verilog HDL design tool

1. The Team

1.1 Team Members
● Yu Wei Tan
● Jonathan Hess
● Samuel Heikens
● Haris Khan

5

1.2 Required Skill Sets for Your Project

● Digital Logic
● Embedded Systems
● Verilog
● Python
● PCB Design
● ASIC layout/hardening
● Debugging
● Open communication

1.3 Skill Sets Covered by the Team

● Digital Logic - All members
● Embedded Systems - All members
● Verilog - All members
● Python -Jonathan, Haris
● PCB Design - Yu Wei
● ASIC layout/hardening - Samuel
● Debugging - All members
● Open communication - All members

6

1.4 Project Management Style Adopted by the Team

Goal-Setting, Planning, and Execution

1. Team goals:

We want to create a justifiable top-level design with the expected inputs

and outputs of each module. We also want to have prototypes of each

module, so that we know that our project is feasible.

2. Strategies for planning and assigning individual and teamwork:

We will assign work based on specialization, skills prior experiences, and

workload balance.

3. Strategies for keeping on task:

We will communicate with each other in order to receive updates on tasks

for our project. We will also be using Git in order to track issues that need

work. We will also communicate with faculty to judge the status of

assignments.

1.5 Initial Project Management Roles

● Haris Khan - Digital Design

● Jonathan Hess - Digital Design

● Yu Wei Tan - Analog Design

● Samuel Heikens - Analog Design

7

2. Introduction

2.1 Problem Statement

Traditionally, a guitar pedal can only perform one specific sound effect, such as

looping the signal. If a guitar player were to try to play with a different sound

effect, they would need to use a different pedal. This requires more physical

space, more inputs to update, and creates more e-waste at the end of life. Our

project eliminates the need to have multiple guitar pedals by creating a chip that

can allow a pedal to perform multiple different sound effects.

2.2 Requirements & Constraints

i. For the current Google eFabless program, the following requirements must be
fulfilled:

● “The project must be targeted on the currently-supported SkyWater Open

PDK for the 130nm process.”

This requirement is fulfilled as we are using the Open PDK for the

memory components as well as in the Caravel harness.

● “The project must be posted on a git-compatible repo and be publicly

accessible.”

This requirement is fulfilled with our GitHub repository.

● “The top level of the project must include a LICENSE file for an approved

open-source license agreement. Third-party source code must be

identified, and source code must contain proper headers.”

This requirement is fulfilled in the git repository’s LICENSE file.

● The repo must include project documentation and adhere to Google's

inclusive language guidelines.

● “The project must be fully open. The project must contain a GDSII layout,

which must be reproducible from the source contained in the project.”

● “Projects must use a common test harness and padframe based on the

Caravel repo. New projects should start by duplicating or forking the

Caravel User Project repo and implementing their project using the

8

https://github.com/sdmay24-21/ASIC-GuitarPedal
https://github.com/sdmay24-21/ASIC-GuitarPedal/blob/main/LICENSE

user_project_wrapper. The Caravel repo is configured as a submodule in

the project under the ‘Caravel’ directory. Note -- you do not need to

initialize nor clone the Caravel sub-directory to complete or submit your

project. See the project README for further instructions. The projects

must be implemented within the user space of the layout and meet all

requirements for the Caravel.”

● “Projects must successfully pass the Open MPW precheck tool, including

LVS and DRC clean using the referenced versions of OpenLane flow.

Projects should implement and pass a simulation test bench for their

design integrated into Caravel. The Caravel User Project provides an

example of how to implement this.”

We have a git runner script that tests our hardens and tests our

design with the OpenLane flow.

ii. Voltage Input from Guitar: 740 mV peak to peak

iii. Our chip will have three different filters. Each of these filters can be used one

at a time. The filters will be delay, reverb, and compression.

Delay:

● analog input for delay settings

● analog input for magnitude settings

● max delay of 5 seconds (stretch goal of 20 seconds with off-chip memory)

Reverb:

● analog input for delay settings

● analog input for magnitude settings

● max reverb of 5 seconds (stretch goal of 20 seconds with off-chip

memory)

9

Figure: Plot representation of the reverb impulse response

Compression:

● analog input for threshold-linear (8-bit)

● analog input for ratio-linear (8-bit)

● The output will be scaled by a factor greater than 1 in order to keep the

volume similar to before the effect is added

Figure: Plot representation of how compression works

iv. We will be using the EFabless process for our design, including the breakout

board (PCB), and any design tools (e.g. Verilator - for Verilog design)

10

v. Design constraints & considerations:

● 10 kHz sampling rate - > 2x of 2637Hz (Highest note)

● Clock will need to be at least 160kHz, 16 bits * 10kHz

● Memory: 10kHz*2 bytes*5 seconds = 100k Bytes for audio data

● OnChipSRAM: 10kHz*2 bytes*1 second = 20kbytes

● The audio ADC and DAC will use 16-bit signals for audio data

● Other analog inputs will be converted to 8-bit digital signals

● Stretch Goal: Making a custom impulse response

vi. Design limitations:

● 38 I/O pins are available for use on the breakout board

● 4 power pads

2.3 Engineering Standards

Below are the engineering standards that we have used/abided by for our design:

● IEEE 1364-2005: IEEE Standard for Verilog Hardware Description

Language

● IEEE 1801-2018: IEEE Standard for Design and Verification of

Low-Power, Energy-Aware Electronic Systems

● ISO/IEC 9899:2018: C programming language (C17)

● IEEE 1076.4-2000: IEEE Standard VITAL ASIC Modelling Specification

● Wishbone Bus

● SPI Protocol

● Audio I/O: The cable is a 2.1 mm DC input at 9 volts, with the center

contact carrying the negative and the outer contact carrying the positive

part of the current. Boss Standard. Requires negative polarity. Uses the ¼

TS cables for input and output.

11

2.4 Intended Users and Uses
Guitar players

By creating this pedal, guitarists will not have to purchase as many pedals and

will have more flexibility. While trying things out they will not have to edit the

physical setup of their guitar and can spend more time creating and playing

music.

Studio artists

By creating this pedal, new studio artists can standardize the pedals that they

carry, reducing the price and variability.

Analog and digital engineers

By creating a new open source project these engineers will gain more knowledge

and a larger resources pool.

12

3. Project Plan

3.1 Task Decomposition

Figure: Gantt chart of our initial projected project timeline

Below are the steps that the team has taken to complete the project:

i. Define the scope & specifications of our project:

a. Brainstorm a specific application for our project

b. Compile a list of functions that may be relevant to our project

c. Need a project that can be finished within the time frame necessary and

also challenging enough

ii. Install and familiarize ourselves with design tools/workspace:

a. Install digital tools that we will use to design our project

b. Familiarize ourselves with how to do basic design in the tool and how it

can be integrated with EFabless

c. This task is necessary so we can design our chip with these tools

13

iii. Design a top-level diagram for the user area:

Figure: Our (poorly drawn) initial top-level design

This task is necessary for us to decompose our project into blocks. Further

revisions were made to this top-level design as we progressed further in the

project.

iv. Meticulously design each module in Verilog:

a. Each module will be given a set of inputs, outputs and requirements to be

met and implemented

b. Each module will be uniquely designed

c. Each module will be verified for proper functionality

d. This task is necessary so that we can assemble all of our modules

e. Off-chip converters will be selected based on design considerations

v. Assemble all modules together:

a. During this process, we will verify the modules as we put them together

b. We need to have a working project that is testable

14

vi. Verify the final design:

a. Our final design will be verified for the design requirements

b. We need to have a verified design before it can be sent to EFabless

vii. Generate Layout/DRC and LVS Checks:

a. This is necessary to make sure our design follows the checks of the

Skywater 130nm process

viii. Submit to eFabless shuttle:

a. We need to have our design verified by Efabless so that they can fabricate

our chip

3.2 Project Management/Tracking Procedures

We will be utilizing the waterfall-style project management. Due to the nature of

our project, as we complete modules of our project it would be challenging to go

back and change design choices in the previous steps, as most steps of the project

are dependent on previous steps. In addition, we will be using Git to keep track of

our progress with issues and milestones.

15

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Task Milestones

i. Define the scope & specifications of our

project:

a. Brainstorm a specific application for

our project

b. Compile a list of functions that may be

relevant to our project

c. Need a project that can be finished

within the time frame necessary and

also challenging enough

Having the project approved by our

client/faculty advisor

ii. Install and familiarize ourselves with

design tools/workspaces:

a. Install digital tools that we will use to

design our project

b. Familiarize ourselves with how to do

basic design in the tool and how it can

be integrated with EFabless

c. This task is necessary so we can

design our chip with these tools

Each member successfully familiarized

themselves with their respective design

tools/workspaces

iii. Design a top-level diagram for the user

area:

a. This task is necessary for us to

decompose our project into blocks

A top-level diagram with specified inputs and

outputs for the full design.

iv. Meticulously design each module in

Verilog:

f. Each module will be given a set of

inputs, outputs, and requirements to

be implemented

Each module will be verified for proper

functionality

16

g. Each module will be designed

h. Each module will be verified for

proper functionality

i. This task is necessary so that we can

assemble all of our modules

j. Off-chip converters will be selected

based on design considerations

v. Assemble all modules together:

a. During this process, we will verify the

modules as we put them together

b. We need to have a working project

that is testable

Compile all project files and make sure there

are no errors

vi. Verify the final design:

a. Our final design will be verified for the

design requirements

b. We need to have a verified design

before it can be sent to EFabless

Create test benches to check outputs and

complete Verilog synthesis

vii. Generate Layout/DRC and LVS Checks:

a. This is necessary to make sure our

design follows the checks of the

Skywater 130nm process

DRC and LVS Pass

viii. Submit to eFabless shuttle

a. We need to have our design verified by

eFabless so that they can fabricate our

chip

Create layout using synthesis tools.

17

3.4 Project Timeline/Schedule

Figure: Gantt chart of our final projected project timeline

All updates & progress that we have made can be viewed on our GitHub page:

https://github.com/sdmay24-21/ASIC-GuitarPedal

3.5 Risks and Risk Management/Mitigation

Task Risk

i. Define the scope & specifications of

our project

0.1

ii. Install and familiarize ourselves

with design tools/workspaces

0.1

iii. Design a top-level diagram for the

user area

0.1

18

https://github.com/sdmay24-21/ASIC-GuitarPedal

iv. Meticulously design each module in

Verilog

0.5

-needs to get done put in as much time

as possible

-Split tasks between team members

v. Assemble all modules together
0.4

vi. Verify the final design
0.4

vii. Generate Layout/DRC and LVS

Checks

0.4

viii. Submit to eFabless/generate

layouts

0.4

3.6 Personnel Effort Requirements

Task Hours and Explanation

i. Define the scope & specifications of

our project

20 hours - creating ideas that will be

approved and will work in practice.

ii. Install and familiarize ourselves

with design tools/workspaces

20 hours-It takes about 10 hours to

get the software installed and another

10 hours to become familiar.

iii. Design a top-level diagram for the

user area

20 hours - taking our original idea

from step one and creating modules of

the project and how they interconnect

with each other.

19

iv. Meticulously design each module in

Verilog

112 hours - We have 7 Verilog

modules. This will give us about 16

hours to design each module.

v. Assemble all modules together
32 hours - Assembling the modules

will take a significant amount of time

to verify that all modules work and to

go back and fix any bugs if necessary.

vi. Verify the final design
24 hours - Verifying the final design

will involve putting in a wide range of

inputs and making sure the outputs

are correct for a given set of inputs

vii. Generate Layout/DRC and LVS

Checks

32 hours - This may take a significant

amount of time due to errors that are

generated from LVS and checks. We

will also need to familiarize ourselves

with the synthesis process.

viii. Submit to eFabless shuttle
24 hours - We will need to become

very familiar with the EFabless

requirements in order to put our

design into EFabless and know the

chip will be fabricated properly.

3.7 OTHER RESOURCE REQUIREMENTS

i. Our design requires the following off-chip components:

● ADC - audio input

● DAC - audio output

● SRAM - off-chip memory

● Miscellaneous parts necessary for a working PCB

ii. We will be sending in our design to eFabless to fabricate our chip.

iii. All other design resources are either provided by eFabless or open-sourced.

20

4. Design

4.1 Design Content

For our project, we are designing a Digital ASIC (Application Specific Integrated

Circuit). Our chip will modify a guitar’s analog input signal using one of many

different digital effects, and produce an altered analog output signal. The ASIC

design will be done entirely in the digital domain using Verilog HDL, but we will

also implement analog off-chip components like ADCs, DACs, and SRAM.

4.2 Design Complexity

i. The design consists of multiple components/subsystems that each utilize

distinct scientific, mathematical, or engineering principles:

Reverb - the design uses a digital finite impulse response to create effects like

reverb and looping

Function block - the design allows the creation of nonlinear functions such as

compression, which uses piecewise functions on individual points in a nonlinear

way to create compression. There are potentially a limitless number of functions

that can be created via this function block.

ii. The problem scope contains multiple challenging requirements that match or

exceed current solutions or industry standards.

The solution uses an application-specific integrated chip instead of an FPGA for

audio effects yet stays configurable and user-editable.

Our chip also has a delay and reverb setting that can repeat the signal up to 5

seconds later. This is much longer than the typical ¼ - ½ second setting that is

present in most reverb and delay systems.

21

4.3 Modern Engineering Tools

Verilator - to write Verilog HDL code, which is used to design the bulk of the

ASIC.

KiCad - To design a PCB that can accommodate both the ASIC and the off-chip

analog components.

Git - To ensure all members have access to the same, most updated version of the

design.

4.4 Design Context

We are designing a guitar pedal that is able to produce multiple different audio

effects. As such, our primary audience would be guitarists, artists, and audio

engineers. Ergo, The overall music community may be affected.

The objective of our project is to address the electronic waste, and, to a lesser

degree, time waste that is generated by single-effect guitar pedals. Our scalable,

multi-effect guitar pedal will eliminate the electronic waste generated by

unused/obsolete guitar pedals, and conserve time. Ultimately, our design

principle is based on technology that helps both people and the environment.

Below is a list of relevant considerations related to our project in each of the

following areas:

Area Description

Public health,

safety, and welfare

Although indirectly, our project is based on the idea of

generating less waste, and improving public health,

safety, and welfare via reducing electronic waste in our

society.

Global, cultural,

and social

It is aimed at musicians/artists, specifically guitar

players, and audio engineers who want to be able to

improve the music they make without compromising the

environment.

22

Environmental Our pedals will use materials that are already very

common like silicon, plastic, and metal. There are no

additional detrimental effects on the environment. In

addition, the purpose of our multi-purpose guitar pedal

is to reduce electronic waste by reducing the number of

guitar pedals needed.

Economic We may see a decrease in the sales of FPGA and regular

guitar pedals if our ASIC pedals become popular. We

may also see fewer pedals being purchased in general

because our pedal can do more than one function.

4.5 Prior Work/Solutions

Traditionally, electric keyboard pedals have been non-programmable, and they

provide only a single effect. In contrast to an electric keyboard, where a user

could have multiple audio effects at once, electric guitars could only have one

audio effect at a given time. Our design will eliminate the need for multiple

pedals, and the possibilities of the numbers and types of effects that can be

implemented are plenty. FPGA guitar pedals, which are similar to our ASIC

guitar pedals, have been done in the past. An example would be a project from

CalPoly which had multiple basic effects that consisted of an input signal and an

impulse response (Robles, 23).

The advantages of creating a project using an FPGA instead of an ASIC would be

that the audio effects provided could always be tweaked and improved, and more

audio effects could also be added in the future. However, the cost of an FPGA is

significantly greater than the cost of an ASIC. In addition, the FPGA guitar pedal

only has linear time-invariant (LTI) effects, whereas our ASIC guitar pedal has a

function block that allows for non-linear effects, such as compression.

23

4.6 Design Decisions

i. One of the key decisions that we will have to make is choosing the appropriate

off-chip components that are electronically compatible and ideal. The off-chip

components have to adhere to the Caravel Maximum ratings:

Figure: Table of Caravel Maximum Ratings

ii. Another key decision is the structure and addressing of the memory. In order

to save on write speeds and read speeds an efficient data structure is needed. We

have decided to use off-chip memory to allow for more, and longer effects. In

addition, off-chip memory also frees up design space on the chip (user area),

allowing us more design freedom.

iii. Another key decision was choosing the specific guitar pedal effects that we

wanted to implement. We have chosen three guitar pedal effects for the following

reasons:

● Multiple effects to show off the capabilities of our ASIC

● Our design is scalable, so it is unnecessary to create more effects

● Our primary focus is to create a scalable design, not showing off signal

processing skills

● The effects we have chosen (reverb, compression, delay) are three of the

most common guitar pedal effects

24

4.7 Proposed Design

At the start of Senior Design 1 (first semester), we created a top-level design that

breaks down the design into multiple modules that can be worked on by different

members. We also planned to implement off-chip components such as an ADC

(to convert analog input to digital signals) as well as a DAC (to convert digital

signals to analog output). In addition, we might include an off-chip memory as

well to allow for more design room on-chip. The design choices can be seen in

section 4.7.1 & 4.7.2.

At the start of Senior Design 2 (second semester), we finalized our design as seen

in section 4.7.3, and decided on the off-chip components that we needed (ADC,

DAC, SRAM).

4.7.1 Design 0 (Initial Design)

Figure: Initial idea of the project

25

Initial design notes:

The ASIC works by taking in input from the ADC and then going to the functions

depending on the control bits. Each section simply does what we require to make

that affect work, and then it gets output to the DAC.

Functionality:

It is intended for the user to be able to play their guitar and select one function at

a time that they want to have enabled. The user will start their recording by

pressing the pedal down and then finish when they release it. The function

parameters can be changed through the use of knobs, each changing the strength

of each function such as the time and the tone, compression, and loop with the

level. The manipulated audio is then output.

4.7.2 Design 1

Figure: Initial top-level design

Design notes:

The input from the ADC is the same however from there it either goes to memory

or compression depending on the state of the control bits.

We added the queue memory to store the last output of the serial register for

either looping that value, such as for a chord progression, or for the reverb effect.

26

The memory controller is overall the same as it determines which way the

memory is used, whether it is looping or reverb as well as holding the tail and

head of the current memory.

The function block applies any nonlinear effect that is needed such as a

compression effect by using comparators and multipliers.

4.7.3 Design 2

Figure: Top-level design of the final design

Design notes:

Compared to design 1, there are more details on the main protocols and top-level

signals. The addition of impulses is now the responsibility of the memory

controller rather than the top-level design control. The top-level design is also

more detailed with the inclusion of off-chip components and SPI buses. In

addition, we have decided on the off-chip components that would be placed on

our PCB design. Each of these components adheres to our design constraints and

the Caravel Absolute Ratings.

27

List of off-chip components:

i. ADC:MCP3464

Figure: Schematic of MCP3464

Important Specifications:

● 16-bit Resolution

● 153.6 kHz sampling rate

● Low noise

● 2.7 to 3.6 analog Vdd

● 1.8 to 3.6 digital Vdd

● 8 channels

● SPI compatible

ii. DAC: AD5676BRUZ

Figure: Schematic of AD5676BRUZ

28

Important Specifications:

● 16-bit Resolution

● +/- LSB maximum at 16-bits

● Low power

● 2.7 to 5.5 Vdd

● 8 channels

● SPI compatible (50 MHz)

iii. SRAM: 23K256T

Figure: Schematic of 23K256T

Important Specifications:

● 20 MHz clock rate

● Low power

● 32,768 x 8-bit organization

● 2.7 to 3.6 Vdd

● 256 kBits (4 needed)

● SPI compatible

29

iv. Audio jack: SJ_63062A

Figure: PCB layout view

Important Specifications:

● 6.355 mm

v. Knobs: 3360Y1103LF

Figure: PCB layout view

Important Specifications:

● Resistance: 1kΩ - 1MΩ

● Resistance tolerance: +/- 2%

30

vi. Pre-amp: LMV1032UP06NOPB

Figure: Schematic view

Important Specifications:

● 1.7 to 5.0 Vdd

● 0.11% THD + noise

● Single channel

The preamp is attached as an intermediary between the input audio jack and the

ADC to reduce noise and increase signal gain.

vii. PCB (hat-board):

Figure: Layout view of the PCB

31

Figure: Schematic view of the PCB

Legend:

● IC1: DAC

● 1C2, IC7: ADC

● VR1-4: Knobs

● IC3-6: SRAM

● J1,7: Audio Jack

● IC8: Pre-amp

Additional notes:

The PCB design has been verified via DRC and LVS checks.

32

4.8 Module Design

i. Control Module:

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Mo

dule

The control module will be using the MCU provided in the Caravel Wrapper. This

uses the PicoRV32 (https://github.com/YosysHQ/picorv32). This is

programmed using the gcc compiler, more information on this programming

procedure can be found in the caravel documentation,

https://caravel-harness.readthedocs.io/en/latest/programming.html. This

allows to debug and edit the system values directly. Here are cases where this

customizability would be helpful:

● Converting to input values.

If an end user wants to use a linear or logarithmic potentiometer but get

the opposite effect, code can be used to convert the logarithmic values to

linear or vice versa.

● Adding extra effects.

If an end user wanted to add extra effects, they could do so with code

rather than in hardware. Because we are using an impulse response

design, many other effects would be possible with changes to the code.

(such as looping and filters)

ii. SPI-Module

Connects the off-chip Sram to the on-chip memory. This makes it possible to

have more space to store our converted audio signal. It is a synchronous device

which means that the devices must be on the same clock as the module.

Integration testing is most important to see how this will work in our system. A

visual representation is below with the slave devices being our memory

33

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Module
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Control_Module
https://github.com/YosysHQ/picorv32
https://caravel-harness.readthedocs.io/en/latest/programming.html

Figure: Diagram of SPI protocol

iii. Compression Module

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Compression

The purpose of this module is to provide the compression sound effect to the rest

of the systems on the chip. Compression is a nonlinear function that will take

audio inputs of 16 bits and compress them to a threshold range. Anything input

that is beyond this range will be multiplied by a fraction to keep the signal close

to the threshold value. A visual representing the usage of the Threshold and Ratio

Values is below.

Figure: Visual aid for the compression module

When the input is below the threshold, the output equals the threshold, and

beyond the threshold, The output is compressed depending on the value of the

ratio.

34

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Compression

For our design, a piecewise model will be used to implement this nonlinear

function. Depending on the region, a set of MUXes will be used to select which

equation will be used. A block diagram of our compression module is shown

below.

Figure: Block diagram of the compression module

When the magnitude of our audio input is less than the magnitude of the

threshold, the audio is sent directly to the output. Otherwise, the compression

function is done as shown above.

iv. Memory Controller Module

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Memory_Co

ntroller

The memory controller controls both memory on-chip and off-chip (with the use

of an SPI controller). It sets and gets the values from the memory related to

impulse response.

The value is grabbed from memory and the impulse and multiplied by Gain (an

8-bit value) added to the buffer and held on the data_out data line. Then it raises

a flag for the control to ready the next impulse point and gain. After all the

impulses the values will still be held at data_out. Then at the start of the

ADC_CLK the buffer (and data_out) is erased for the next ADC value.

35

https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Memory_Controller
https://github.com/sdmay24-21/ASIC-GuitarPedal/wiki/Modules_Memory_Controller

The impulse values are also 16-bit but are broken up in the following way:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LJ JUMP VALUE MULTIPLIER

Where LJ is LARGE JUMP

WHEN LARGE JUMP =0

The Jump Value indicates the value to be subtracted from the current read

address. The default Jump Value is 1, which means a value of 0 translates to

addr = addr+1.

curr_r_adr <= curr_r_adr - ({10'b0, jump_value}+1);

WHEN LARGE JUMP =1

If the Large jump is set then the Jump value is multiplied by (2^6) (or is shifted

to the left 6 bits). It doesn't have a base offset so a Jump Value of 0 yields a 0

jump.

curr_r_adr <= curr_r_adr - jump_value*(2^6);

This was designed to allow large jumps for very long delays or long reverb.

The impulses are stored in the beginning section of the memory. This can be

configured by changing the “impulses” input on the memory controller.

v. On-Chip SRAMModule

Our SRAMModule is a predesign SRAM from EFabless. We adjusted the address

width to make this module usable for our application.

36

4.9 Hardening

Hardening was attempted using the provided tools in a virtual Linux

environment. Many issues were encountered during hardening which resulted in

this process being incomplete. While our design was not hardened, we learned

more about the ASIC hardening process and helped improve ASIC resources.

If future teams take our project, we will provide all available resources to help

them continue fixing hardening errors.

Here is the most recent error:

5 Testing

5.1 Unit Testing

Each individual top level Verilog module will have a corresponding Python script

that simulates the output values that the tests should yield. Each module will

then be tested via a Verilog testbench, and the testbench results will be compared

against the values yielded by the Python script. When the modules are assembled,

they will be tested using the logic analyzer on the microcontroller provided by

Efabless. The aforementioned tests will be conducted using OpenLane tools.

Memory Controller Testing:

The test data was generated with the Python module. It takes in a test audio

signal and an impulse audio signal. Then it outputs a CSV file holding the ADC

values and control to the memory controller.

37

Figure: Generated Debug file output

It then checks the generated verilog output to the expected output generated by

the python module. All of the outputs are saved in an output file and all errors are

then saved in an error file. The output file can be used to generate the audio. This

was used to both see and hear while debugging.

Figure: Example of a caught error in audio form (input, output, expected)

38

5.2 Interface Testing

The interface being tested is the SPI (Serial Peripheral Interface), where the

interface test will verify the speed and consistency of our SPI controllers. The first

testing will be done in a Verilog testbench with a simulation of an SPI bus for the

SRAM and ADC/DAC SPI controllers. This will verify that the maximum speed

for memory operations conforms to our specifications and confirm that the

ADC/DAC is compatible. Then, testing will be done on the physical hardware

once the part has been fabricated. The tests will be conducted using OpenLane

tools.

5.3 Integration Testing

The critical data path will be determined once we synthesize our design. We

expect this to be our impulse which has to go through memory, the longest

module.

5.4 System Testing

Create test benches for the three levels of Verilog and then one for the physical

chip. The first level of the Verilog testing is without control or SPI. In this

testbench, the input and output will be set and checked directly. The next level of

testing will use a testbench with control but without SPI. Then finally we. Last

testing on the PCB and physical part to verify and get the specifications of the

fabricated part.

A full-scale test will be conducted on the final integrated design using a large

Verilog Testbench, and the outputs will be compared against Python simulation

results. Three testbenches, each for one level of Verilog code, and one testbench

for the physical chip will be made. The first level of Verilog testing will have the

inputs/outputs checked directly. The next level of testing will include the control

module, and the third level of Verilog testing will involve testing the entire design

using SPI communication via the GPIO pins.

39

5.5 Regression Testing

We will ensure new modules or changes won't break the system with merges in

GitHub as they actively run tests whenever a new merge is done to the main

branch. We will have to write a sufficient amount of tests to make sure that the

full functionality of the larger modules remains the same.

5.6 Acceptance Testing

We will demonstrate that the design requirements are met by comparing the

Python simulation results to match the values of our Verilog testbenches. We will

run the synthesized user area against the Efabless precheck that is provided for

us to confirm that the layout matches the Verilog design.

6. Professionalism
*This discussion is with respect to the paper titled “Contextualizing

Professionalism in Capstone Projects Using the IDEALS Professional

Responsibility Assessment”, International Journal of Engineering Education Vol.

28, No. 2, pp. 416–424, 2012

6.1 Areas of Responsibility

We will be using the IEEE code of ethics.

Area of

responsibility

Definition NSPE Canon IEEE

Work

Competence

Perform work of

high quality,

integrity,

timeliness, and

professional

competence.

Perform services

only in areas of

their competence;

Avoid deceptive

acts.

5. to improve the

understanding of

technology; its

appropriate

application, and

potential

consequences; 6.

to maintain and

improve our

technical

competence and

40

to undertake

technological

tasks for others

only if qualified

by training or

experience, or

after full

disclosure of

pertinent

limitations; 7. to

seek, accept, and

offer honest

criticism of

technical work, to

acknowledge and

correct errors,

and to credit

properly the

contributions of

others; 10. to

assist colleagues

and co-workers in

their professional

development and

to support them

in following this

code of ethics.

Financial

Responsibility

Deliver products

and services of

realizable value at

reasonable costs

Act for each

employer or client

as faithful agents

or trustees.

Communication

Honesty

Report work

truthfully,

without

deception, and

are

understandable to

stakeholders.

Issue public

statements only in

an objective and

truthful manner;

Avoid deceptive

acts.

3. to be honest

and realistic in

stating claims or

estimates based

on available data;

Health, Safety,

Wellbeing

Minimize risks to

safety, health, and

well-being of

stakeholders.

Hold paramount

the safety, health,

and welfare of the

public.

1. to accept

responsibility in

making decisions

consistent with

the safety, health,

41

and welfare of the

public, and to

disclose promptly

factors that might

endanger the

public or the

environment;

Property

Ownership

Respect the

property, ideas,

and information

of clients and

others.

Act for each

employer or client

as faithful agents

or trustees.

8. to treat fairly

all persons and to

not engage in acts

of discrimination

based on race,

religion, gender,

disability, age,

national origin,

sexual 35

orientation,

gender identity,

or gender

expression; 9. to

avoid injuring

others, their

property,

reputation, or

employment by

false or malicious

action;

Sustainability Protect the

environment and

natural resources

locally and

globally.

1. to accept

responsibility in

making decisions

consistent with

the safety, health,

and welfare of the

public, and to

disclose promptly

factors that might

endanger the

public or the

environment;

Social

Responsibility

Produce products

and services that

benefit society

and communities.

Conduct

themselves

honorably,

responsibly,

2. to avoid real or

perceived

conflicts of

interest whenever

42

ethically, and

lawfully so as to

enhance the

honor, reputation,

and usefulness of

the profession.

possible, and to

disclose them to

affected parties

when they do

exist; 4. to reject

bribery in all its

forms;

Work Competence: Works towards an understanding of necessary material, and

does good work based on knowledge. There is also care taken to critique and

improve existing work from others and him/herself.

Financial Responsibility: The components we choose will be adequately priced,

Communication Honesty: Communicates with others with integrity with respect

to data and ideas.

Health, Safety and Wellbeing: Makes responsible decisions with respect to the

general wellbeing of all people.

Property Ownership: Uses what they own responsibly.

Sustainability: Understand how the products we are designing may affect the

environment.

Social Responsibility: Avoids conflict of Interest and makes others aware when

there is a possible conflict of interest.

Differences Between IEEE and NSPE:

Work Competence: IEEE puts more focus on this area and gives a stronger

description of what it means to have work competence.

Financial Responsibility: IEEE does not provide guidance on financial

responsibility.

Communication Honesty: IEEE focuses more on general communication as

opposed to public statements.

Health, Safety, and Wellbeing: IEEE goes more into disclosing content, instead of

just saying to hold them paramount.

Property Ownership: IEEE gives a list of things to not discriminate on as opposed

to just acting fairly.

Sustainability: NSPE does not provide guidance on Sustainability.

43

Social Responsibility: NSPE just says to act lawfully, but IEEE gets into the

details of avoiding conflict of interests and rejecting bribery.

6.2 Project Specific Professional Responsibility Areas

Work Competence: This is relevant to our project as it is important for us to learn

and ensure we are competent when working on the design of our chip. I think we

are doing just ok in this area. We usually understand what we need to do and do

it, but we are also behind where we would like to be.

Financial Responsibility: This applies to our project as we will be purchasing data

converters and off-chip memory. We are doing well in this area as we have been

working to find more affordable components.

Communication Honesty: N/A

Health, Safety and Wellbeing: N/A

Property Ownership: N/A

Sustainability: This is applicable to our project as we should account for waste

generated from our product. We have been doing well in this area as our project

will reduce E-waste.

Social Responsibility: N/A

6.3 Most Applicable Professional Responsibility Area

Work Competence is the most applicable as it is important for us to learn and

understand our areas of strength and experience on a daily basis.

44

7. Closing Material

7.1 Discussion

Discuss the main results of your project – for a product discuss if the

requirements are met, for experiments-oriented project – what are the results of

the experiment, if you were validating a hypothesis – did it work?

7.2 Conclusion

Summarize the work you have done so far. Briefly reiterate your goals. Then,

re-iterate the best plan of action (or solution) to achieving your goals. What

constrained you from achieving these goals (if something did)? What could be

done differently in a future design/implementation iteration to achieve these

goals?

7.3 References

Robles, Carson. "An FPGA Implementation of Digital Guitar Effects." Digital

Commons, California Polytechnic State University,

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1326&context=

cpesp. Accessed September 20, 2023.

7.4 Appendices

Any additional information that would be helpful to the evaluation of your design

document. If you have any large graphs, tables, or similar data that does not

directly pertain to the problem but helps support it, include it here. This would

also be a good area to include hardware/software manuals used. May include

CAD files, circuit schematics, layout etc,. PCB testing issues etc., Software bugs

etc.

45

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1326&context=cpesp
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1326&context=cpesp
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1326&context=cpesp

7.4.1 Team Contract

TeamMembers

1) Yu Wei Tan

2) Haris Khan

3) Samuel Heikens

4) Jonathan Hess

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Monday: 1pm, Library or Coover, virtual if needed

Thursday: 2pm, Library or Coover, virtual if needed

Friday: 4:30pm, Library or Coover, virtual if needed

2. Preferred method of communication updates, reminders, issues, and

scheduling (e.g.,

e-mail, phone, app, face-to-face):

Text Message for immediate communication, git lab and email for content

messages.

3. Decision-making policy (e.g., consensus, majority vote):

Discuss and try to win consensus, if this is not possible ¾ vote is required.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will

minutes be

shared/archived):

Record Minutes and Share them in GitLab. We may switch who records each

meeting.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team

meetings:

Attendance is expected at all team meetings. If a member is not able to attend

they should give

46

advance notice.

2. Expected level of responsibility for fulfilling team assignments, timelines, and

deadlines:

At meetings, we will assign/split assignments to members. At subsequent

meetings, we will follow up and hold members accountable.

3. Expected level of communication with other team members:

Provide detailed communication in meetings and outside of meetings. Any time

there is an

update that is relevant to the project, this should be shared in detail. If team

member(s) is/are

struggling with part of the project they should notify the team if delays are

expected or if they

need more help.

4. Expected level of commitment to team decisions and tasks:

Team members should be able to commit about 6 hours per week outside of class,

TA meetings,

and faculty meetings.

Leadership

1. Leadership roles for each team member (e.g. team organization, client

interaction, individual component design, testing, etc.):

Haris Khan - Digital Design

Jonathan Hess - ScrumMaster

Yu Wei Tan - Systems

Samuel Heikens - Scribe

2. Strategies for supporting and guiding the work of all team members:

We will talk regularly at team meetings. After the team meetings we will project

work for all team members. Each member will report back their results. Other

members can step in to help or give tips to support other members. Team

members should also use Slack liberally to find solutions to issues. Slack has been

very helpful to past teams, and we would like to use this resource as well.

47

3. Strategies for recognizing the contributions of all team members:

At each team meeting, members from each part of the project will debrief their

contributions.

This will be a time to recognize what they have accomplished.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member

brings to the

team.

Haris Khan - VHDL, Verilog, Assembly, C

Jonathan Hess - VHDL, Verilog, Python, C/C++, Embedded System, and PCB

Design

Yu Wei Tan - ADS, integration simulations/testing, embedded programming

Samuel Heikens - Cadence, Packaging Knowledge, internship at Texas

Instruments

2. Strategies for encouraging and supporting contributions and ideas from all

team members:

When team members share ideas, we will consider all ideas. We may have

brainstorming

sessions where we just give ideas about how to solve problems. We will thank and

encourage our

team members for their contributions.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g.,

how will

a team member inform the team that the team environment is obstructing their

opportunity or ability to contribute?)

If a team member is struggling to work on the project or feels included in the

project, they should

notify the team. The team can respond by making proper accommodations.

48

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

Create a justifiable top-level design with the expected inputs and outputs of each

module.

Create state diagrams

2. Strategies for planning and assigning individual and teamwork:

We will assign work based on specialization, skills and prior experiences, and

workload

balance

3. Strategies for keeping on task:

Weekly update to GitLab Gantt chart using issues to lay out goals and

deliverables.

Communication with faculty to judge the status of assignments

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Our team will discuss it at our next team meeting. The team member will have to

wear a dunce

hat during team meetings if the other team members find their behavior violated

the team

contract.

2. What will your team do if the infractions continue?

Our team will notify the TA or professor.

a) I participated in formulating the standards, roles, and procedures as stated in

this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer

the

49

consequences as stated in this contract.

1) Yu Wei Tan DATE 9/7/23

2) Jonathan Hess DATE 9/7/23

3) Samuel Heikens DATE 9/7/23

4) Haris Khan DATE 9/7/23

50

